关键字:
胡锦涛在辽宁考察 称我国 
·STC3675数控活塞外圆车
·SUC8107铣钻打数控专机
·SUC0301曲轴平衡去重机
·SUC8109数控组合机床
·SUC8205数控铣端面钻中
·SUC8119曲轴油孔钻削专
·SUC8118曲轴连杆颈车车
·ZYZ-125单置式车体加工
·PY-XYEQP-66-11
·D318高速加工中心
·D165高速加工中心
·GMC2060u型桥式五轴加

高速加工领域的新理念

来源:信息中心 时间:2009-2-1 10:58:32


研究者旨在开发一种可以解释宏观和微观加工之间差异的主轴。
对于“微细”零部件方面的发展趋势,看看宏观世界就可以知道。以常规尺寸进行制造首先用于制造静止的目标。只有在稍后的时间它才用来制造运动组件中的零件。类似地,微细制造也是从静止物体开始向微型机械中的零部件发展的。
但是这些微型移动部件的设计和属性是受到严格限制的。它们的生产如今一般涉及成层建造,即微型石版印刷术。因此材料的选择包括硅或溅射金属,几何形状限于可以通过分层堆叠而形成的2½维形状。为什么设计者不可以用从实心钢加工的三维几何形状指定微观零件呢?
这个问题的答案主要在于速度或者说缺少速度。微细刀具需要较高的转速来实现高效切削速度及生产性金属去除率。对高效三维铣削需要多高速度所进行的分析表明,该数值大约为500,000r/min。
对这个数字本身而言并不是很高。牙医的牙钻速度可以达到300,000 r/min。但是牙医的牙钻跳动可能达到10微米。在微细铣削中,这么高的跳动相当于切屑厚度的10倍左右。
这种与牙医的牙钻所进行的比较是佛罗里达州Gainesville市佛罗里达大学机床研究中心的教授John Ziegert提出来的。Ziegert博士正负责500,000 r/min主轴的设计和结构,这种主轴将可以铣削钢及类似金属以形成几百微米数量级的复杂特征。这种主轴将采用直径为0.010英寸及以下,现在一般只用于诸如铝、石墨和塑料等软材料中加工简单特征的刀具。
该大学正在实验其第一个500,000 r/min的实际产品。如果证明该主轴可以可靠地进行切削,则会被送往Sandia国家实验室进行加工试验。通过其微观系统研究项目,Sandia已经具备了制造直径小至25微米的铣刀的能力。过去对这种刀具进行的实验一直限于速度不超出30,000 r/min的主轴。这么低的速度允许的进给速度最好以每小时若干英寸表示,仅5~14英寸/小时。

微观与宏观


开发主轴的大部分工作涉及调研在微细加工方面所进行的已经形成文献资料的研究以及吸收这种早期工作所得到的教训。Ziegert博士说这种调研所得出的两个重要结论说明了微观加工和宏观加工的区别。
首先,刀具故障模式是不同的。在常规尺寸加工中,刀具会磨损。但是在用微尺寸刀具进行加工时,最终结果更可能是刀具破损。对小刀具而言,在发生比较明显的刀刃磨损之前,很容易就达到其弯曲强度极限。
第二个差异是微型加工中的切屑厚度一般小于刀刃半径。这一点与正常尺寸的加工差异很大,其中切屑的厚度比刀具的刀刃半径要大好多倍,即使在较轻的精加工过程中也是如此。如果微型加工中切屑厚度仅仅按比例推算大小,则切削力将很容易超出刀具的弯曲强度。
切屑厚度小于刀刃半径的结果是由微型铣刀明显为负的前倾角决定的。有效的前倾角可能为负50度。或者甚至可以比此数值更大。这么大的负前倾角增加了切屑产生的切削力,这样就进一步需要减少切屑厚度。所产生的切屑负荷如此轻,因此一个非常高的主轴转速可以将“ipr”转速转换成生产性的“ipm”切削速度。
Ziegert博士对这些与弯曲强度及切屑厚度有关的问题所进行的分析,正是导致他得出500,000r/min的估计转速的原因所在。

无刀夹


佛罗里达大学设计的速度这么高的主轴采用切削刀具的刀柄做主轴的轴。而受速度不断增加的摩擦轮的驱动,刀具会比该组件任何其它部件都转得更快。
Ziegert博士说,没有任何其它解决方案会使主轴达到所要求的低跳动。常规的铣削主轴采用刀夹使刀具成为主主轴的加长体。但是没有任何刀夹夹紧机构—弹簧夹头、热收缩配合—可以将微型刀具保持足够同心,从而可以在硬金属中进行精确的三维铣削加工。
相反,刀柄在客户空气轴承中单独自转。驱动摩擦轮的主轴以刀具速度的1/10左右运转,以50,000r/min传送0.01 Nm的转矩。
Ziegert博士说,他可以从经验中指出微观和宏观加工之间一种更根本的差异。在微观加工中,如果不借助有关设施,人眼或人耳无法确定刀具何时已经破损。一把在8小时的循环一开始就断裂的刀具有可能不会一断裂就被发现,很可能要等到8小时循环周期过后才被发觉。
因此,这种主轴另一个关键元件是连续监视加工力的三轴传感器。为了让微型加工主轴可以高效进行加工,需要一个安全“警卫”来确保刀具时刻处于切削过程中。

对表面位置误差的理解


将转速改变几百r/min,刀具的有效切削半径就可能会发生变化。
许多以高主轴转速进行铣削加工的车间都可以理解为什么转速方面很少的变化可以导致切深的巨大改善。这种解释与颤振、以及高速主轴在转速范围某些窄窄的区域发生“谐振”的趋势有关。挑选一个对应于这些稳定区域之一且颤振会消失的转速,让刀具可以进行较高切深加工。
但是即使是那些对以这种方式避免颤振很熟悉的车间也会遇到相关的危险。不再颤振的刀具却依然在振动。实际上,当颤振消失后,刀具趋向于以甚至更高的振幅发生振动,因为低颤振主轴速度发生在系统本质上趋向于振动的那些“自然频率”上。而这种振动则有可能影响刀具的切削直径。
换言之,大量跳动可能仅仅来源于主轴转速。以13,000r/min铣削到0.065英寸厚的薄壁,如果以14,000r/min铣削,则可能只有0.061英寸厚,因为振动在两侧增加了0.002英寸的误差。在两种情况下,机床、刀具及刀具路径都是一样的。只是主轴速度发生了变化,而仅此就足以引起加工后的表面产生不同的景象。这种现象被称作“表面位置误差”。

给有关手册一只援手


软件计算器可以提供速度、进给速度和切深等标识高速切削的最明显特征的数值。
对于高主轴速度与低切深的组合而言,有一种将许多加工数据表置之脑后的方式。切屑变薄、颤振以及球头刀具切削半径减小的可能性等都是一些可以认为某手册中推荐的高速加工过程切削参数无效的共同现象。以高转速和低切深运行的车间通常必须通过在自己的车间进行物理实验才能找到最佳切削参数。
但是实验是唯一获得这些数据的方式吗?针对切屑变薄、对球头刀具的有效半径甚至针对颤振而调节的切削参数等均可以通过数学方式加以预测,条件是给该数学模型提供足够的信息。没有任何一个打印在纸上的数据表可以提供所有这些信息,但是软件设施却可以实现这一点。
这就是两名在加利福尼亚州圣地亚哥工作的CAD/CAM编程员最近开发的高速加工计算器High Speed Machining Calculator背后的理念。在往数据区中输入有关刀具和切削的合适信息后,计算器会给出推荐的充分考虑了高速和低切深效应的铣削参数。计算器在用户的CAM软件顶部一个小窗口中运行。
其开发者,Arnel Canja与Terrell Moose,拥有为模具、飞机零部件以及当地海军空运库其它零件进行编程的经验。海军组织可以免费使用该软件,Canja与Moose可以将其销售给别人。这种行销已经证明是这对夫妻所面临的挑战之一早期的一个经销商已经申请破产。该计算器如今可以通过Compu-快速软件Compu-fast
Software获得。

高速加工效应


“切屑变薄”是这种软件要处理的效应之一。针对铣削中切屑负荷而提供的加工数据表的推荐值趋向于假定刀具完全啮合,意味着每个刀齿都通过180度旋转进行切削。对于以较低径向深度进行精加工切削的立铣刀,刀具啮合实际要大大小于此值。当径向深度较低时,高速加工计算器通过提高进给速度而将这一点考虑进去,以便保持切屑负荷具有生产性意义。对于球头铣刀,轴向和径向深度都要考虑。
采用三角学中可比做法来调节球头铣刀的有效半径。对于这种刀具,切削半径不一定要与刀具半径相同。任何轴向切深小于球半径的情况都不会采用球的全部直径,从而降低有效切削半径。该计算器不仅提高了浅切削中的转速值,以维持目标切削速度“平方英寸/分钟sfm”数值,同时还在标准手册参数允许较高表面速度采用小直径刀具的场合提高sfm数值。
对于颤振,该计算器的方法可能比此要稍微欠准确一点。低颤振主轴转速的真实计算将需要对主轴的频响进行分析。该计算器没有这种功能。相反,它依赖于用户自己的颤振特征,结合建立在声学领域的谐振式谐波理论基础上的分析。
用户将颤振描述为严重、中等或轻度。然后用户在两个可能表征颤振性能的谐波模型之间进行选择。此时,计算器已经针对这种颤振准备好了加工参数,包括发生这种颤振的转速数值在内。基于这些输入,软件会提出针对特定低颤振主轴转速的一些建议数值。
对该软件的这种特定特征还没有确切的把握。它处理颤振问题的有效性有多高只有在更多车间使用后才能得知。但是,它确实有一个很吸引人的“卖点”—可以在不具备测量机床低颤振转速技术或不进行这方面培训的情况下掌握高速加工中的颤振情况。







关闭窗口】【打印该页
本信息真实性未经证实,仅供您参考。未经许可,不得转载。
公司简介 | 产品中心 | 售后服务 | 版权声明 | 联系方式
PageRank 酷站目录